3dptek

在当今制造业快速发展的时代,传统铸造厂面临着日益激烈的市场竞争和不断提升的产品质量要求。砂型 3D 打印机作为一项具有创新性的技术设备,正逐渐成为铸造厂提升竞争力、实现转型升级的关键。本购买指南旨在为传统铸造厂的管理者提供全面、深入的指导,帮助他们做出明智的购买决策。

一、了解自身需求

分析工厂生产现状

  • 传统工艺评估:仔细审视目前工厂所采用的传统铸造工艺,包括模具制作的方式(如木模、金属模等)、造型工艺(手工造型或机器造型)、熔炼和浇注的流程等。评估每个环节所耗费的时间、人力、物力成本以及存在的问题。例如,传统的木模制作可能需要数周时间,而且容易出现尺寸偏差和损坏;手工造型劳动强度大,效率低下且质量不稳定。
    • 产品特点分析:明确工厂主要生产的铸件类型,是简单结构的铸件还是具有复杂内部空腔、薄壁结构或精细曲面的铸件。确定铸件的尺寸范围,从几厘米的小型铸件到数米的大型铸件都要考虑在内。同时,分析对铸件精度的要求,比如某些航空航天领域的铸件可能需要达到毫米级甚至更高的精度。此外,还要考虑铸件的材质,不同的材质在铸造工艺和设备要求上可能会有所差异。
    • 生产规模考量:评估工厂的日常生产规模,包括每月或每年的铸件产量。了解生产订单的特点,是大批量单一产品生产还是小批量多品种生产。对于生产高峰期和低谷期的产能变化也需要有清晰的认识,这将影响设备的选型和生产安排。
3DPTEK-J1600Pro砂型3D打印印机新品牌
3DPTEK-J1600Pro 砂模3D打印机

确定目标和期望改进的方向

  • 成本控制目标:如果降低成本是主要目标,需要分析各个环节的成本构成。模具制作成本在传统工艺中占比较大,而砂型 3D 打印机可以省去模具制作环节,大幅降低这部分成本。同时,考虑人工成本,3D 打印机的自动化程度高,可以减少对人工的依赖。材料成本方面,虽然 3D 打印需要特定的砂子和粘结剂,但通过精确控制材料使用量,可以提高材料利用率,同时还可通过砂料的再回收,降低浪费。另外,3D打印工艺可以优化砂模结构,通过轻量化设计来减少砂料的用量。例如,对于一个中型铸造厂,通过引入砂型 3D 打印机,模具成本可能降低 40%,人工成本降低 30%,材料成本节约 20% 左右。
    • 效率提升需求:对于追求生产效率提升的铸造厂,要关注设备的成型速度。砂型 3D 打印机可以在数小时内完成一个复杂砂型的打印,相比传统模具制作和造型的数周时间,效率提升显著。此外,3D 打印机可以同时进行多个砂型的打印,或者在一个大型砂型上进行分区打印,大大缩短整体生产周期。例如,某汽车零部件铸造厂引入 3D 打印机后,产品开发周期从原来的几个月缩短到几周,生产效率提高了 50% 以上。
    • 质量提升期望:若对产品质量有更高的要求,砂型 3D 打印机的高精度打印能力至关重要。它可以精确控制砂型的尺寸和形状,减少铸件的尺寸偏差和表面缺陷。同时,由于打印过程的稳定性和一致性,可以提高铸件的内部质量,减少气孔、夹渣等缺陷。例如,在一些高端装备制造领域,3D 打印砂型铸件的废品率从传统工艺的 10% 降低到 2% 以下,产品质量得到了极大的提升。
    • 灵活性增强方向:对于需要应对小批量、多品种生产需求或个性化定制订单的铸造厂,砂型 3D 打印机的优势尤为明显。它无需制作实体模具,可以根据数字模型快速切换生产不同的产品,大大提高了生产的灵活性。比如,一些艺术铸造厂或定制化零部件生产企业,通过 3D 打印技术可以满足客户多样化的需求,拓宽了市场空间。

二、砂型 3D 打印机的关键特性评估

打印精度

  • 精度对铸件质量的影响:打印精度直接决定了铸件的尺寸精度和表面质量。高精度的打印可以保证铸件的尺寸偏差在极小的范围内,满足严格的装配要求。在表面质量方面,高精度打印可以减少铸件表面的粗糙感和瑕疵,提高铸件的外观质量。例如,在发动机缸体等关键零部件的生产中,高精度的砂型可以确保活塞与缸体之间的配合精度,提高发动机的性能和可靠性。
    • 选择合适精度的设备:首先,根据产品的设计要求和使用场景来确定所需的精度级别。对于一些普通机械零部件,毫米级的精度可能就足够;而对于航空航天、医疗器械等领域的高精度铸件,可能需要达到亚毫米级甚至更高的精度。其次,了解不同设备的精度参数,包括层厚、尺寸误差范围等。可以参考厂家提供的技术资料和实际测试数据,同时与其他用户交流经验。例如,3DPTEK砂型 3D 打印机能够实现 ±0.3mm 的尺寸精度,适用于对精度要求较高的铸件生产。
    • 不同精度级别设备的对比和适用场景:低精度设备通常价格相对较低,适用于一些对精度要求不高、注重成本控制的生产场景,如普通建筑机械铸件。中等精度设备在价格和性能之间取得平衡,适用于大多数工业零部件的生产。高精度设备则适用于高端制造领域,如航空航天、精密仪器等,但价格相对较高。例如,在生产汽车发动机缸盖时,中等精度的设备可以满足基本的生产要求;而对于航空发动机叶片等高精度铸件,就需要选用高精度设备。

打印尺寸

  • 打印尺寸与生产规模和铸件大小的关系:对于大型铸造厂,通常需要能够打印大型铸件的设备,以满足生产需求。例如,在生产大型船舶发动机缸体时,可能需要数米甚至更大尺寸的打印设备。而对于小型铸造厂或生产小型铸件的企业,较小尺寸的设备可能更为经济实用。同时,打印尺寸也会影响设备的占地面积和空间需求,需要在工厂规划时加以考虑。
    • 选择策略:根据工厂的生产规划和市场定位来确定所需的打印尺寸。如果主要生产大型铸件,就需要选择具有较大打印尺寸的设备;如果以小型铸件为主,可以选择小型或中型设备。还要考虑未来的发展需求,预留一定的产能扩展空间。此外,要注意设备的打印尺寸是否可以灵活调整,例如一些设备可以通过更换打印平台、甚至无砂箱打印来适应不同尺寸的铸件生产。例如,一个中型铸造厂计划未来拓展到大型铸件生产领域,那么在选择设备时,可以优先考虑那些具有可升级打印尺寸或模块化设计的设备,以便在未来根据需求进行扩展。

设备稳定性和可靠性

  • 设备稳定运行的重要性:在铸造生产中,设备的稳定性至关重要。一旦设备出现故障,可能会导致生产中断,影响交货期,给企业带来巨大的经济损失。特别是对于连续生产的铸造厂,设备的长时间稳定运行是保证生产效率和产品质量的基础。例如,在汽车零部件铸造生产线上,如果 3D 打印机频繁出现故障,会导致生产线停滞,影响整车生产进度。
    • 考察稳定性和可靠性的方法:
      • 查看厂家的质量控制体系:了解厂家的生产质量管理流程,包括原材料采购、零部件加工、装配调试等环节的质量控制措施。一个拥有完善质量控制体系的厂家,通常能够生产出质量更稳定可靠的设备。例如,某些知名厂家对每一个零部件都进行严格的质量检测,确保其符合高标准的质量要求。
      • 用户口碑:与已经使用过该设备的用户进行交流,了解他们对设备稳定性和可靠性的评价。用户的实际使用体验是最直接、最真实的反馈。可以通过参加行业展会、加入专业社群等方式与其他用户建立联系,获取他们的意见和建议。例如,一些铸造厂在选择设备时,会优先考虑那些在同行业中有良好口碑的品牌。

软件支持

  • 优秀软件的功能和作用:
    • 模型处理:强大的 3D 打印软件能够对复杂的铸件模型进行高效的处理,包括模型修复、优化、切片等功能。例如,对于一些从 CAD 软件导入的模型可能存在缺陷或不适合打印的问题,软件可以自动检测并修复这些缺陷,确保模型能够顺利进行打印。
    • 打印参数设置:软件应提供丰富的打印参数设置选项,如打印速度、层厚、喷头温度、粘结剂用量等。用户可以根据不同的铸件要求和材料特性,精确调整这些参数,以获得最佳的打印效果。例如,对于薄壁铸件,可能需要调整层厚和打印速度,以保证砂型的强度和精度。
    • 生产流程管理:软件还应具备生产流程管理功能,包括订单管理、任务排程、设备监控等。这样可以帮助铸造厂实现高效的生产管理,提高生产效率。例如,通过软件可以实时监控设备的运行状态和打印进度,合理安排生产任务,避免生产拥堵。
    • 评估软件的易用性、功能完整性以及与设备的兼容性:
      • 易用性:软件的操作界面应简洁明了,易于上手。具备直观的图形界面和清晰的操作流程,即使是非专业技术人员也能够快速掌握。可以通过试用软件或查看软件的操作演示视频来评估其易用性。例如,一些软件采用向导式的操作流程,用户只需按照提示逐步操作即可完成整个打印过程。
      • 功能完整性:检查软件是否具备上述提到的模型处理、打印参数设置、生产流程管理等基本功能,以及是否有一些特色功能,如自动优化算法、远程控制等。功能越完整,设备的适用性和灵活性就越高。例如,某些软件具备智能优化算法,可以根据铸件的形状和结构自动调整打印参数,提高打印效率和质量。
      • 兼容性:确保软件与设备的兼容性良好,能够稳定地驱动设备进行打印。同时,还要考虑软件与其他设计软件(如 CAD 软件)的兼容性,以便顺利导入和处理模型。可以查看软件的技术文档或咨询厂家,了解其支持的文件格式和软件接口。例如,一些软件支持常见的 STL、OBJ 等文件格式,可以与大多数 CAD 软件进行无缝对接。

三、成本与投资回报分析

设备购买成本

  • 不同品牌和配置的价格范围:砂型 3D 打印机的价格因品牌、技术水平、打印尺寸、精度等因素而有所差异。一般来说,欧美品牌的设备价格相对较高,可能在数百万甚至上千万元;中国品牌的设备价格相对较低,根据不同配置可能在几十万元到几百万元不等。例如,一些高端欧美的设备具有先进的技术和卓越的性能,但价格非常昂贵;而一些中国的新兴品牌的设备在性价比方面更具优势,比如3DPTEK,这个品牌在中国是比较有名的,设备性价比非常高,同时3DPTEK自己运营了差不多10家铸造厂,同时又为中国的几十家铸造企业提供设备,可以说是经过了市场的严格验证的,是非常不错的选择。
    • 价格差异的原因分析:
      • 技术水平:先进的打印技术、高精度的控制系统、稳定的机械结构等都会增加设备的成本。例如,采用激光烧结技术的设备通常比采用普通粘结剂喷射技术的设备价格更高,因为激光烧结技术具有更高的精度和更好的砂型强度。
      • 品牌影响力:知名品牌通常在研发、生产、售后服务等方面投入较大,其品牌价值也会体现在设备价格上。一些具有多年行业经验和良好口碑的品牌,往往能够提供更可靠的设备和更优质的服务,但价格也相对较高。
      • 售后服务:完善的售后服务体系,包括设备安装调试、培训、维修保养、技术支持等,会增加厂家的运营成本,从而反映在设备价格上。一些厂家提供 24 小时在线技术支持、快速响应的维修服务等,这些都会对价格产生影响。

运营成本

  • 耗材成本:
    • 砂子:砂型 3D 打印机使用的砂子通常需要满足一定的粒度、形状和强度要求。不同品质的砂子价格有所差异,而且随着市场供需关系的变化也会波动。例如,一些高强度、低粉尘的专用砂子价格可能相对较高,但可以提高砂型的质量和打印效果。
    • 粘结剂:粘结剂是将砂子粘结在一起形成砂型的关键材料,其价格也会影响运营成本。不同类型的粘结剂在性能和价格上存在差异,需要根据实际需求进行选择。同时,粘结剂的用量也会影响成本,一些先进的打印技术可以减少粘结剂的使用量,降低成本。
    • 能源消耗成本:设备在运行过程中会消耗电能,其能源消耗成本与设备的功率、运行时间、电价等因素有关。在选择设备时,可以关注设备的能效比,选择节能型设备。例如,一些设备采用了先进的节能技术,能够在保证打印质量的前提下降低能源消耗。高功率的设备通常单位时间能耗更高,若设备长时间连续运行,能源消耗成本会显著增加。而且不同地区的电价差异也会对成本造成影响,比如工业用电集中地区可能电价有一定优惠政策,需综合考虑这些因素来准确评估能源成本。
    • 设备维护成本:设备的定期维护和保养是保证其正常运行的必要条件,也会产生一定的成本。包括更换易损件、设备清洁、校准等方面的费用。一些厂家会提供设备维护保养的服务套餐,铸造厂可以根据自身情况进行选择。同时,设备的可靠性和稳定性也会影响维护成本,故障率低的设备维护成本相对较低。例如,一些设备采用高品质的零部件和先进的设计,减少了易损件的更换频率,降低了维护成本。

投资回报评估

  • 成本节约分析:
    • 模具成本节约:如前所述,传统铸造工艺中模具制作成本较高,而砂型 3D 打印机无需制作实体模具,可以大大降低这部分成本。通过计算传统模具制作成本与 3D 打印砂型的成本差异,可以评估出模具成本的节约情况。例如,一个复杂铸件的模具制作成本可能高达数万元,而采用 3D 打印砂型,这部分成本可以降低 80% 以上。
    • 人工成本节约:由于 3D 打印机的自动化程度高,减少了对人工的依赖。可以对比传统工艺下的人工数量和成本与采用 3D 打印后的人工需求,计算出人工成本的节约幅度。例如,一个传统铸造生产线可能需要数十名工人进行模具制作、造型等工作,而采用 3D 打印机后,可能只需要几名操作人员进行设备监控和维护,人工成本可以降低 50% 左右。
    • 材料成本节约:通过精确控制材料使用量,提高材料利用率,可以降低材料成本。例如,传统造型工艺中可能会产生大量的废砂和废料,而 3D 打印可以根据模型精确控制材料的使用,减少浪费。同时,一些 3D 打印材料可以回收再利用,进一步降低成本。
    • 效率提升带来的收益增加:
      • 生产周期缩短:砂型 3D 打印机可以大大缩短产品的开发周期和生产周期。对于一些急需上市的产品,提前交付可以获得更高的市场价格和竞争优势。通过计算提前交付产品所带来的额外收益,可以评估效率提升的价值。例如,某汽车零部件铸造厂通过采用 3D 打印技术,将新产品的开发周期从原来的 6 个月缩短到 2 个月,提前进入市场,获得了更高的市场份额和销售收入。
      • 产能增加:设备的高效运行和快速成型能力可以提高工厂的产能,从而增加销售收入。可以根据工厂的生产计划和市场需求,预测增加的产能和相应的销售收入。例如,一个铸造厂原来每月生产 1000 件铸件,引入 3D 打印机后产能提高到 1500 件,假设每件铸件的利润为 100 元,那么每月增加的利润就是 50,000 元。
    • 投资回报周期计算:综合考虑设备购买成本、运营成本、成本节约和收益增加等因素,通过计算投资回报周期来评估投资的可行性。投资回报周期是指从设备投入使用到收回全部投资所需要的时间。例如,假设一台砂型 3D 打印机的购买成本为 200 万元,每年可以节约成本和增加收益共计 80 万元,那么投资回报周期大约为 2.5 年。同时,还需要考虑市场变化、技术更新等因素对投资回报周期的潜在影响,以便做出更准确的评估。

四、市场调研与品牌选择

收集市场信息

  • 行业展会:参加国内外的铸造行业展会是获取砂型 3D 打印机市场信息的重要途径。展会上可以直接接触到众多设备厂家,了解他们的最新产品和技术。在展会上,可以与厂家的技术人员和销售人员进行深入交流,获取详细的产品资料和报价。同时,还可以观察设备的现场演示,直观地感受设备的性能和操作流程。例如,在一些大型国际铸造展上,会有来自全球各地的知名厂家展示他们的最新设备和技术,为铸造厂提供了丰富的选择。
    • 专业网站:有许多专业的铸造设备网站和行业论坛,上面汇集了大量的设备信息、用户评价和技术文章。通过浏览这些网站,可以了解不同品牌设备的特点、用户反馈和市场趋势。一些网站还提供设备对比和选型工具,帮助用户更好地选择适合自己的设备。例如,在某些专业网站上,可以找到不同品牌砂型 3D 打印机的详细参数对比和用户的真实评价,为购买决策提供参考。
    • 用户论坛:加入铸造行业的用户论坛或社群,与其他铸造厂的用户交流经验。这些用户通常会分享他们使用不同设备的实际感受、遇到的问题以及解决方法。他们的经验和建议对于新用户来说非常有价值,可以帮助避免一些常见的错误和陷阱。例如,在一些论坛上,用户会分享设备的实际使用效果、售后服务质量等方面的信息,为其他用户在选择设备时提供参考。

评估品牌信誉

  • 厂家资质:查看设备厂家的资质证书和荣誉奖项,了解其在行业内的地位和影响力。例如,一些国家级专精特新“小巨人”企业,高新技术企业,拥有ISO 质量管理体系认证等,这些资质证明了厂家在技术研发、生产管理等方面的实力。荣誉奖项方面,如获得行业内的科技创新奖、优秀产品奖等,也体现了厂家的产品在技术和质量上得到了认可。
    • 生产经验:具有丰富生产经验的厂家通常在产品质量和售后服务方面更有保障。可以了解厂家从事砂型 3D 打印机生产的时间、生产规模以及过往的项目经验。一个在行业中经营多年,为众多铸造厂提供过设备和解决方案的厂家,往往更值得信赖。例如,某些厂家已经在3D打印和铸造领域深耕数十年,积累了丰富的经验,能够根据不同铸造厂的需求提供个性化的解决方案。
    • 技术研发实力:关注厂家的技术研发投入和创新能力。先进的技术是设备性能和质量的保证,厂家是否拥有自己的研发团队、专利技术以及与科研机构的合作情况都可以作为评估的依据。例如,一些厂家不断投入研发资金,推出新的打印技术和功能,以满足市场不断变化的需求,这样的厂家在技术上更具前瞻性。
    • 市场占有率和用户评价:了解该品牌设备在市场上的占有率可以反映其在行业内的受欢迎程度和竞争力。同时,通过查看其他用户的评价,可以获取关于设备质量、性能、售后服务等方面的真实反馈。可以在网上搜索用户评价、咨询行业专家或者直接联系其他铸造厂了解他们对该品牌设备的使用感受。例如,如果一个品牌的设备在市场上有较高的占有率且用户评价普遍较好,那么说明该品牌在各方面都表现出色。

实地考察与样机测试

  • 实地考察:如果条件允许,建议到设备厂家进行实地考察。可以参观厂家的生产车间,了解其生产工艺、质量控制流程以及生产设备的先进程度。观察厂家的生产管理是否规范,员工的技术水平和工作态度如何。同时,还可以与厂家的技术人员和管理人员进行深入交流,了解他们的技术实力和服务理念。例如,在生产车间中,可以查看设备的组装过程、零部件的质量以及生产过程中的质量检测环节。
    • 样机测试:争取进行样机测试是非常重要的一步。在厂家或自己的工厂进行样机测试,将实际的铸件模型输入设备,观察设备的打印过程、砂型质量以及设备的稳定性和可靠性。通过样机测试,可以直观地了解设备是否符合自己的生产需求和质量要求。在测试过程中,要注意记录打印时间、砂型精度、表面质量等关键数据,并与厂家提供的技术参数进行对比。例如,可以准备一些具有代表性的复杂铸件模型进行测试,观察设备在处理复杂结构时的表现。记住,这一点很重要,如果暂时没能到现场参观的,即便要支付费用(件不大,一般厂家会免费打,或者以成本价帮您打)也要争取让厂家打印样件,这是对设备最直观的了解。

五、售后服务与技术支持

售后服务内容

  • 设备安装调试:设备的安装调试是保证设备正常运行的基础。优秀的售后服务应包括专业的安装团队,确保设备能够正确安装并进行初步的调试和校准。在安装过程中,应向用户讲解设备的基本结构和操作方法,以便用户能够初步了解设备。例如,安装人员会根据工厂的实际布局和生产需求,合理安排设备的安装位置,并进行电气、机械等方面的连接和调试。
    • 培训:全面的培训服务对于用户来说至关重要。培训内容应包括设备的操作技能、软件使用方法、日常维护保养知识以及常见故障的排除方法等。培训可以分为现场培训和在线培训两种形式,以满足不同用户的需求。例如,现场培训可以在设备安装完成后进行,由专业的培训师进行面对面的指导;在线培训则可以通过视频教程、网络课堂等方式,让用户随时随地进行学习。
    • 维修保养:及时、高效的维修保养服务是设备长期稳定运行的保障。售后服务应包括定期的设备保养,如清洁、润滑、检查等,以及在设备出现故障时能够迅速响应并进行维修。厂家应提供充足的备件库存,确保在维修过程中能够及时更换损坏的零部件。例如,当设备出现故障时,售后服务团队应在规定的时间内到达现场,进行故障诊断和维修,尽量减少设备停机时间对生产的影响。
    • 软件升级:随着技术的不断发展,设备的软件也需要不断升级和优化。售后服务应包括定期的软件升级服务,以提高设备的性能和功能。软件升级可以通过网络远程进行或者由技术人员上门服务,确保升级过程顺利、安全。例如,新的软件版本可能会增加一些新的功能,如优化打印算法、提高打印速度和精度等,为用户带来更好的使用体验。

技术支持的重要性

  • 解决技术难题:在设备使用过程中,可能会遇到各种技术难题,如打印参数的优化、砂型质量的提升、与其他设备的兼容性问题等。专业的技术支持团队可以及时提供解决方案,帮助用户解决这些问题,确保生产顺利进行。例如,当遇到打印精度不达标的问题时,技术支持人员可以通过分析打印参数、设备状态等因素,给出相应的调整建议,提高打印精度。
    • 优化打印参数:不同的铸件和生产环境可能需要不同的打印参数设置。技术支持人员可以根据用户的具体需求和实际情况,提供优化的打印参数,以达到最佳的打印效果和生产效率。例如,对于一些复杂结构的铸件,技术支持人员可以根据其特点,调整层厚、喷头移动速度、粘结剂用量等参数,提高砂型的质量和强度。
    • 提供工艺改进建议:随着生产经验的积累和技术的进步,工艺改进是提高生产效率和产品质量的重要途径。技术支持团队可以根据行业的最新发展和用户的实际情况,提供工艺改进的建议和方案。例如,通过优化生产流程、改进造型方法等,提高铸造厂的整体生产水平。

六、总结与建议

总结购买要点和注意事项

  • 明确需求:在购买之前,一定要对自身工厂的生产现状、产品特点、发展规划等有清晰的认识,明确自己的需求和期望改进的方向,这样才能选择到最适合自己的设备。
    • 全面评估设备特性:从打印精度、打印尺寸、设备稳定性、软件支持等多个方面对设备进行全面评估,确保设备的性能能够满足生产需求。
    • 考虑成本与投资回报:不仅要关注设备的购买成本,还要充分考虑运营成本、成本节约和收益增加等因素,计算投资回报周期,确保投资的可行性。
    • 重视品牌信誉和售后服务:选择具有良好品牌信誉、丰富生产经验和强大技术研发实力的厂家,同时要确保厂家能够提供完善的售后服务和技术支持。

鼓励做出明智决策

  • 传统铸造厂在面临设备更新和技术升级时,要勇于尝试新技术、新设备。砂型 3D 打印机作为一项具有创新性的技术,能够为铸造厂带来巨大的变革和提升。但在做出购买决策时,要综合考虑各方面因素,进行充分的市场调研和分析,与厂家进行深入的沟通和交流。

希望传统铸造厂的管理者能够根据本购买指南,结合自身工厂的实际情况,做出明智的购买决策,引入适合自己的砂型 3D 打印机,提升工厂的竞争力,实现可持续发展,在数字化转型的浪潮中赢得先机,为铸造行业的发展注入新的活力。

七、在线留言获取砂型3D打印机报价

2024年1月4日,中美两国三院院士、美国加州大学伯克利分校无机化学家杨培东教授团队发表了2024年首篇Science文章。

高光致发光量子产率的蓝光和绿光发光器是目前固态照明和彩色显示领域的研究前沿。杨培东教授团队通过铪和锆卤化物八面体团簇的超分子组装,展示了近乎统一的光致发光效率的蓝色和绿色发射材料。高发光的卤化物钙钛矿粉末具有优异的溶液加工性,可以用于薄膜显示器和自发光3D打印。通过搅拌和超声处理,光致发光粉末均匀分散到树脂中。利用多材料数字光打印方法,将蓝色和绿色发射器组装成复杂的宏观和微观结构。在405nm结构紫外光照射下,树脂迅速转化为固体3D结构。

打印的埃菲尔铁塔建筑模型在254nm激发后,显示出各自的蓝色和绿色。两座埃菲尔铁塔的尺寸都在几厘米以内,具有高分辨率的空间特征。3D打印的八位体桁架结构内蓝色和绿色发射区域之间的边界的特写视图揭示了颜色过渡的高精度,两侧均没有任何颜色交叉。具有双发射的八位体桁架结构也实现了明亮的发射和高结构精度。3D打印发光结构的潜在应用非常广泛,从复杂的室内环境照明解决方案到无缝集成到可穿戴设备中,正在不断发展。

2024年3D打印技术领域第二篇Science文章于2月8日发表。来自澳大利亚昆士兰大学(Jingqi Zhang等)、重庆大学(Ziyong Hou 、Xiaoxu Huang)、丹麦技术大学的联合团队,通过向Ti5553金属粉末中添加Mo ,实现了3D打印过程的原位合金化。

具体的说,通过将钼精确输送到熔池中,钼可以在每层扫描期间充当晶体形成和细化的籽晶核,促进了从大柱状晶向细等轴和窄柱状晶结构的转变。钼还可以稳定所需的β相并抑制热循环过程中相异质性的形成,通过这种方法不仅提高了3D打印钛合金的强度,还实现了延展性和拉伸性能的完美平衡。

作为钛工业中所谓主力的TC4,建议使用的最小断裂伸长率为10%,而此次3D打印制备的钛5553在屈服强度达到926兆帕的情况下,断裂延伸率达到了26%,具有极大的应用潜力。该方法还有望应用于其他金属粉末混合物,并定制具有增强性能的不同合金。

2024年3D打印技术领域第一篇Nature文章于2月27日发表。来自中国科学院金属研究所的研究团队发表了题为“High fatigue resistance in a titanium alloy via near void-free 3D printing”的文章。

文章认为,3D打印的基础微观结构具有天然高抗疲劳性,而该性能的降低可能是微孔的存在造成的。常规消除微孔的努力往往造成组织粗化,而组织再细化的过程又会带来气孔复现,甚至引发晶界α相富集等新的不利因素,使微观结构的进退努力两难。
中科院团队在进行热处理研究的过程中,发现了一个关键的后处理工艺窗口,高温下3D打印钛合金的相变和晶粒生长具有异步性。只要有足够的过热度,就会立即发生α到β相的转变,而虽然已经到达了β相的生长温度,但晶界需要一段孕育期来重新排列。利用这一宝贵的热处理窗口,研究人员确定了热等静压与高温短时间处理相结合的热处理方法,既实现了组织细化,又防止了α相富集以及微孔的重新出现,最终制备出几乎无微孔的近打印态3D打印钛合金。

具有该微观结构的TC4钛合金实现了约1GPa的高疲劳极限,超过了当前所有增材制造和锻造钛合金以及其他金属材料的抗疲劳性。

2024年3D打印技术领域第2篇Nature文章于3月13日发表。斯坦福大学的研究人员以该校2015年开发的连续液体界面生产技术为基础,开发出了一种更高效生产微尺度颗粒的3D打印技术,每天可制造多达100万个具有高精度且可定制的微米级颗粒。

纳米到微米尺度的颗粒在生物医学设备、药物和疫苗输送、微流体和能量存储系统领域具有广泛应用。然而,传统的制造方式需要在制造速度、可扩展性与粒子形状和均匀性以及粒子性能等多个因素之间进行平衡。
斯坦福大学的研究人员开发了一种可扩展、高分辨率的r2r CLIP 3D打印流程,使用单数字微米级分辨率的光学与连续胶卷,能够快速、可变的制造和收获具有各种材料和复杂几何形状的粒子。通过这项技术,研究人员可以实现微米级精度的3D打印,同时保持高生产速度和材料选择的灵活性,为粒子制造带来了新的可能性。

这种可扩展的粒子生产技术已经展示了从陶瓷到水凝胶歧管等广泛领域的制造潜力,随后在微工具、电子和药物输送方面具有潜在应用。该研究以“Roll-to-roll, high-resolution 3D printing of shape-specific particles”为题发表。

来源:AMReference

3月20日,长征八号遥三运载火箭成功将“鹊桥二号”卫星送入预定轨道。航天六院在相关报道中指出,“在此次发射中,有卫星贮箱结构应用3D打印工艺实现,这对于微小卫星批量生产和组网发射奠定了良好的基础,具有重大商业价值”。

2024年4月3日,探月工程用鹊桥通导技术试验卫星—天都二号卫星在轨分离正常,冷推系统工作正常,标志着国内航天首次实现3D打印贮箱在轨应用,为3D打印技术在空间推进领域的运用奠定坚实的基础。

该贮箱由航天科技六院801所和航天科技八院800所共同研制,采用铝合金制造。研制团队以颠覆式的技术创新方案实现了贮箱的一体化和轻量化设计,开发了高致密度、高精度激光选区熔化成形和精确控制后处理方法,先后攻克了贮箱结构功能一体化设计技术、薄壁结构致密化成形技术、铝合金内流道后处理技术等关键核心技术,在实现一体化成型的基础上,该贮箱的研制周期缩短了80%,成本降低了62%。

这是国内首个一体化成型并实现在轨应用的3D打印铝合金贮箱,不仅所有组件均在贮箱上实现高度集成化安装,贮箱内部也通过3D打印流道实现了各个组件之间的联通,无需导管连接。研制团队充分贯彻了“数字世界多轮迭代,物理世界一次成功”的数字化设计理念,秉承“产品极致改进”的研制模式,在3D打印贮箱研制方面达到了国内一流水平,向“一定要赶上和超过世界先进水平”的目标努力前进,为航天事业贡献新的力量。

来源:AMReference

4月4日,3D打印技术参考注意到,一家名为Greene Group Industries (GGI)传统金属注射成型开发商收购了间接金属3D打印技术开发商Holo,该事件实际上具有重要的标志性意义。一是“先进的”3D打印技术未能找到足够多的行业应用以支持其实现良性发展,二是传统制造行业已关注到3D打印技术对其生产流程的重要价值

Holo是Autodesk的衍生公司,其开发了基于光固化的PureForm金属间接3D打印技术,能够实现纯铜、不锈钢、钛合金、镍基高温合金等材料的复杂金属零件快速原型设计和规模化生产。尤其需要指出的是,该公司率先攻克了基于DLP技术的纯铜3D打印。通过DLP+脱脂烧结工艺成型的纯铜的致密度平均为96-98%,足以达到大块铜95%的导热率和导电率。此外,该工艺还可能会减少激光打印产生的裂纹问题。基于已经成熟的工艺,Holo着重于散热器件的开发与制造,而不是销售3D打印机。3D打印技术参考2021年的报道中指出,其一条试验生产线每月可生产20000个纯铜小零件,并希望每年生产数百万个铜散热片零件。

GGI公司拥有百年历史并提供高品质金属零件,被认为是各种金属成型技术的行业领导者,包括冲压、成型、数控加工、线切割加工以及金属注射成型 (MIM)。其先进的制造、销售和支持网络使其能够从初始产品概念出发,迅速提供原型,并开发短期生产过程。

GGI公司首席执行官表示,“Holo 的技术是对我们金属注塑、冲压和精密加工产品的补充。这项交易使GGI能够在不到两周的时间内交付原型金属零件,其表面质量和特征分辨率可与金属注塑成型相媲美。PureForm增材制造技术将通过支持整个产品生命周期的更快迭代来加强我们与客户的合作伙伴关系,同时GGI保持其优质的工程服务和质量。”

Holo的旗舰产品PureForm增材制造技术使用由MIM粉末和光固化树脂混合而成的金属浆料,实现开发高分辨率、高吞吐量零件间接3D打印。具体的说,该技术根据光聚合原理生产高精度零件生坯,其原料为金属粉末和光敏聚合物的混合体。通过掩模曝光,可以精确快速地成型整个层面,聚合物粘结剂选择性的在局部交联,将金属粉末粘结在一起。打印完的生坯经历脱脂和烧结后可以形成致密化的零件。

间接金属3D打印,终要与MIM行业融合

间接3D打印技术的后端流程与MIM技术完全相同,这使传统金属注射成型制造商能够非常轻松的将该技术纳入生产流程。

间接3D打印技术有助于实现快速原型制作,而这些是传统制造方法难以实现的,这是此类技术对于MIM行业的关键价值之一,是GGI收购Holo的重要原因。3D打印技术因免于开模具而能大幅提高了开发的灵活性,缩短开发时间,并降低开发成本,属于对MIM领域早期零件开发的重要补充性甚至颠覆性技术。

当前,粘结剂喷射、光固化等间接金属3D打印技术均使用用于MIM的粉末作为3D打印材料,对于MIM行业来说未增加材料成本。对于基于光固化的间接金属3D打印,可以实现超精密3D打印,制造表面质量更好、细节特征更精细甚至超过MIM标准的零件。除此之外,Holo还声称其技术能够实现复杂设计的规模化生产,并认为是航空航天、汽车、医疗、电子和工业领域的理想选择。

来源:AMReference

4月12日,由航天科技集团六院自主研制的130吨级可重复使用液氧煤油发动机,圆满完成两次起动地面点火试验。至此,该台发动机累计完成15次重复试验,30次点火起动,累计试验时长突破3900秒,重复试验次数突破我国液体火箭主发动机试验次数纪录,为后续我国可重复使用运载火箭首飞奠定了基础。

发展航天,动力先行。研制可重复使用火箭的前提是率先研制成功可重复使用的发动机。据悉,相比传统一次性火箭,可重复使用火箭将增加四项关键技术:一是“落得准”,二是“接得稳”,三是“用不坏”,四是“修得快”。而这些关键技术的突破,可重复使用发动机的研制首当其冲。该型发动机作为后续我国可重复使用运载火箭主动力,具有综合性能高、拓展能力强、可靠性高等特点。

在设计研发方面,六院研制团队秉承“技术极限摸底,研发极速迭代,产品极致改进”的研制理念,践行“一定要赶上和超过世界先进水平”的院魂,通过掌握多次点火、宽范围入口压力起动、大范围变推力等多项核心关键技术,回答了如何“落得准”“接得稳”的问题;通过突破快速简易维护、状态检查评估等技术,解决了“用不坏”“修得快”的难题;通过深入分析机理、不断优化结构、充分开展试验验证,全面治理发动机薄弱环节,持续提高了发动机固有可靠性。

在智能制造方面,六院研制团队以柔性敏捷的单元化制造体系和高效融通的数字化管控体系为基础,以重复使用发动机关键技术指标要求为牵引,策划实施了69项工艺攻关与改进研究项目,突破了复杂结构组合件增材制造一体成型、多型产品高效自动焊接等关键技术,建立了重复使用发动机生产制造核心技术体系,大幅提高发动机工艺技术的先进性和稳定性、产品质量的一致性和可靠性。

近年来,随着制造业的发展和技术的进步,3D铸造技术正逐渐在各个领域展现出其独特的应用价值。特别是在超大型铸件制造领域,3D铸造技术的应用受到了国内外相关领域头部厂商的关注和青睐。

据资料显示,特斯拉、宝马、比亚迪等车企已经在采用3DP砂模打印技术。特斯拉采用3D砂型铸造技术快速、低成本地验证巨型模具的设计和工程规格。奔驰某概念车型采用3D砂型铸造实现了后副车架、悬挂支架等结构的单体大尺寸零件铸造。国内比亚迪新电池公司正在探索3D打印技术在新能源汽车整车试制、汽车零部件和热管理系统等领域的前瞻性应用开发。

在航空航天领域,3D砂铸技术可用于制造发动机零部件、航天器结构件、动力装置等重要部件。可有效解决超大尺寸、多维曲面、复杂结构工件的成型难题,在小批量大尺寸模具制造以及特种行业的模具迭代升级研发上有着传统制造工艺无法比拟的优势。在能源动力领域,3D铸造技术可被应用于大尺寸耐压复杂型腔结构件、大型薄壁轻量化零部件等的制造。

可见,大型铸件制造在航空航天、船舶、泵阀、汽车(新能源)、能源动力(电气)、工业机械(机器人/无人机)、轨道交通、3C电子、雕塑、教育科研、康复医疗等领域具有广泛的应用需求,而传统的制造方法面临诸多挑战,特别是在新产品的研发试制阶段。例如由于铸件尺寸巨大,通常需要拆分成部分进行铸造,再通过焊接集成,这不仅增加了设计负担、时间和成本,还容易导致焊接缺陷,影响产品质量和一致性。同时,修改模具也是个难题。

而3D铸造技术则可针对大型铸件的诸多特点给出更优的解决方案:

1.复杂结构设计优化。3D打印技术能够制造出传统工艺难以实现的复杂形状结构,进一步拓展了设计空间,提供了更多的创新可能性。
2.产品轻量化。3D打印技术可以实现材料的局部优化和镂空设计,使得零部件既能够保持足够的强度,又能够减轻重量。
3.功能集成一体化。在汽车行业,3D打印技术已经大量应用在一体化设计上,同一零部件实现多个零件、多种功能的集成。
4.批量定制化。大型铸件批量定制化采用传统工艺开模费用高、周期长,3D打印可省去开模时间和费用,提高效率、节省成本。

为满足大型铸件制造的市场需求,3D打印装备及快速制造服务提供商北京三帝科技股份有限公司于国内率先推出了自主研发的超大尺寸3DP砂型打印机3DTEK-J4000,该设备突破传统加工尺寸限制,最大可成型4米的砂型。设备创造性地采用了无砂箱柔性区域成型技术,破除了设备成型尺寸越大、设备价格狂飙的怪象,使得4米的或更大尺寸的设备,与2.5米的设备价格相差无几成为可能。经济、灵活,以更低的单位成本和更短的交付时间,经济高效地实现超大尺寸的砂型制造,并可根据用户需求按需定制扩展打印平台,满足10米+级的生产需求(6米/8米/10米设备已在同步接受预定),帮助用户最大限度地提高生产力。(国外的朋友可以点击这里了解我们的 large 3D printer)

该设备采用国际一线高精度、高通量喷头,配合高性能成型工艺和智能算法技术,可为用户提供卓越的成型精度、平衡可控的铸造性能和优良的可靠性。配备高速振动式铺粉系统、自动粉料循环系统及自研设备控制软件等,砂型尺寸精度好、强度高、发气量低、表面质量出色;设备操作简单、运行稳定可靠,具有打印预警提示功能,“视觉监控智能化系统”可实现加工全过程的实时监测和记录可追溯;开源材料工艺,可针对用户按需调整;配套高性能树脂粘结剂、固化剂、清洗剂,保证成型质量和稳定性。

某用户巨型、大平面、薄壁结构部件,采用传统焊接和铸造工艺难以满足要求,采用三帝科技3D铸造工艺,45天交付2件成品,成品尺寸为1800mm×2000mm,壁厚5.5mm。
某客户重达1.25吨的巨型铝合金铸件,下端直径900mm,上端直径1200mm,高1850mm,传统制造方法存在成本高、周期长的问题,且无法实现所需的复杂结构。采用三帝科技3D铸造工艺仅15天就完成了交付,为客户节省了大量时间和成本。
三帝科技为客户交付的轻量化、大曲面、薄壁新能源商卡副车架,重约27KG,壁厚5.5mm,采用优质铝材T6061。传统铸造方式仅模具制造就需要1-2个月,且费用高昂。采用三帝科技3D铸造工艺2周即完成成品交付。

【关于三帝科技】
北京三帝科技股份有限公司(3D Printing Technology, Inc. )是一家3D打印装备与快速制造服务提供商,国家高新技术企业,专精特新企业,工信部增材制造典型应用场景供应商。同时拥有“SLS+SLM+3DP+BJ”3D打印技术的创新者,业务涵盖3D打印装备、3D打印原材料的研发及生产、金属成品件快速制造服务、3D打印工艺技术支持服务等,建立了完整的3D打印快速制造产业链,广泛应用于航空航天、船舶、泵阀、汽车(新能源)、能源动力(电气)、工业机械(机器人/无人机)、轨道交通、3C电子、雕塑、教育科研、康复医疗等行业。

导读:由于3C消费电子领域呈现出对3D打印的爆发性市场需求,苹果、三星、华为、比亚迪的供应商康瑞新材料,2023年营收达24.7亿元,要涉足3D打印了!去年年底,广州某华为供应商通过收购金属3D打印机厂商的方式来增强自身的3D打印能力。

2024年3月20日上午,康瑞三帝3D打印设备项目签约仪式在江阴市高新区举行。
图:江阴市委常委、高新区党工委副书记、管委会副主任顾文瑜出席签约仪式

江阴市委常委、高新区党工委副书记、管委会副主任顾文瑜在签约仪式上表示,江阴高新区近年来积极实施创新驱动战略,重点支持高端装备产业发展,特别是3D打印产业。针对康瑞、三帝科技等企业,高新区将提供全方位支持,加速项目建设,共同促进产业蓬勃发展。

图:江苏康瑞新材料科技股份有限公司董事长朱卫介绍项目发展情况(左);北京三帝科技股份有限公司董事长宗贵升介绍产业合作情况(右)


三帝科技和康瑞新材料都是新质生产力的积极实践者。

多年来,三帝科技以“从3D打印开始,用数字科技升级制造”为愿景,积极推动“3D赋能”和“3D3C”的发展战略。在这一战略的指引下,三帝科技不仅实现了自身技术的创新和突破,更为许多铸造企业和注塑成型企业赋能,为3C产品生产注入了新的活力。

康瑞新材料公司精密金属材料年产能超2万吨,专注于为下游精密制造领域客户提供高精度、高性能、特定材质及结构的精密金属材料。公司产品包括金属层状复合材料(钛-铝复合材料、钢-铝复合材料、铜-铝复合材料)、精密金属异型材以及精密金属磨光棒、精细金属丝等多元形态的精密金属材料,应用于消费电子、汽车零部件、工业设备零部件、医疗器械等应用领域。

三帝科技凭借其先进的粘接剂喷射3D打印技术,成功实现了铸造和注塑成型的大规模定制生产,为复杂零部件的制造提供了全新的解决方案,赋能铸造和注塑成型企业发展,并通过分布在国内的十多家子公司提供快速制造服务。与此同时,三帝科技利用其近百项激光3D打印专利技术,进军3D打印在3C产品中的应用领域,取得了国内第一张3D打印定制钛合金助听器医疗器械注册证,并通过合作快速切入通过通讯终端零部件制造领域。

相关负责人表示,这次与康瑞新材料的合作,首先要研发生产3C专用3D打印设备,实现3D打印智能化、自动化、低成本大批量生产通讯终端零部件;然后推广到其它应用领域,如新能源汽车等。
南极熊3D打印
如果苹果、华为、三星、小米、荣耀、OPPO、vivo这些3C大厂真的大量采用3D打印工艺,国内目前很难有厂商可以承受得了那么多的生产任务。可能需要几百台甚至上千台金属3D打印机,每年打印钛合金粉末达千吨/年,才能满足大批量零件的交付。

相关机构预测,2030年内,3D打印技术的最大应用市场将出现在3C消费电子/汽车等民用领域,达千亿级别,超过现在的军工国防市场,呈现出几个十亿甚至百亿级别的应用企业。

magnifierchevron-down
zh_CNChinese